
- ' . j Y u 9 / .

TRANSLATION AND EXECUTION OF DISTRIBUTED

ADA PROGRAMS: IS IT STILL ADA?***

Richard A. Volt
Trevor N. Madge

Crrpry D. B u t r d
Psdmanabhan Kriihnan

Robotics Racarch Laboratory
College of Engineering
University of Michigan

Ann Arbor, Michigan 48109

Abrtrrct

Distributed execution of a single program is becoming incressingly important for embed-
ded real-time systems. The single program approach to distributd programming allows
the advantages of language level mftaare engineering developments to be fully realized
across machine boundaries. This paper examines =me of the fundamental issues and
trade-offs involved in the translation and execution of programs written in the Ada
language and intended for distributed execution. A set of principal dimensions to the
problems are identified and the impact of thew dimensions dixuued. A set of possible
elements of the language which might be distributed are identified and the consquences
of their distribution dixuued. L i b v subprograms and library packagu are identified
as natural distributable units of the language. The importance of the prognm-te

proeessor/memory mapping b a b discussed.

(LASB-CR- 18 1 Cf6) %.EA l i S L A I I C b: A PC E XECUIIZOl
CE D I S 3 R I E U T Z L A C A E f i C G 6 A U S : IS I T STILL
A L A ? (Hich iqan U t i v .) 27 F A v a i l : ITIS

N8 7-3 C460

Unclas
00/61 00794C9

'A& ia regbtend tndcmuk of the Dcpattmcat of Defense.

"hb work w u putidly rponmrrd by Land System Dirimoo of Ceocrd Dpamia, G n n t No. DEY-

01540 rad NASA, Gnot No. NAG 2ssO.

/,In.h53

There has been considerable work done on tbc subject of parallel prgnmming (e
the excellent survey of [I]). The bulk d this work has concerned i t d with shared
memory architectures. In eontrmt, hltle has been done in the cme of programs that run
on distributed systems (21. However, distributed execution of a single pmprm b becom-
ing iwemingly important for embedded real-time astemr m such systems are increm
ingly implemented with distributed microeomputetb. Tbe single program sppmrch to
propmming closely coordinated actions d multiple computers dlors the advantages of

language level software engineering developments, (e.g., abstract data types, separate
compilation of specifications and implementations, and extensive compile time e m r
chccki) , to be fdly realized =rods machine boundaries. As yet, however, there m fer
impIemcntations rhicb allow distributed execution of a single program.

While most eflortu directed toward distributed programming have emphasized
developing communication mechanisms and designing languages to accommodate dbtri-
bution, r e take tbe appmach of adopting Ada and investigating its implications. We

take this appmach because Ada seems destined to become a major factor in embedded
softrare systems, tbe Ads Language Reference Manual 131 indicates that distributed exe-

cution of Ada programs was in the minds of the language designen, and there is go r ing
interest in the use of Ada for distributed systems. This paper exminu some of the fun-
damental issues and tradeofis for distributed execution of a single program written in
the Ada language.

A f e r distributed Ada systems have been proposed and/or arc in the process of
being constructed. Cornhill [4,5] describes the Ada Program Partitioning Language
(APPL) for distributing an Ada program among a set of proeeson. This system permits
the distribution of a ride ruiety of Ada elemenb. Jessop [e] advocates the use of a

pack- type to allow programs in the language to dynamically create node. The
exkn6on to Ada implemented by Intel also includes 8 p8ckage type p]. The package
type, bowcver, b a modification of the h~g08#. &mitqe and Chelini b] present a

gcnml dexription of four approaches to programming distributed systems in Ada. The
approach are described in general terms and no implementations or detailed duigns
are indicated. Indeed, h i t y e and Chelini's fourth approach does not really qualify for

distributed progam exccatioa.

n e moat comprehensive study to date b by Tedd, et J. PI. They advocate an
approach baed apon virtual nodes. Full Ada u rupported on each virtual node, which
mwt rrpport s b d memog. Communication between t h u d n o d e b allowed only by

a

tmk rendezvous. They deacribc an extensive a p k m for conrtrpcting datributd pre
grams at link time, i.e., the mapping of tbc pmgmms onto processor, ir done dtn tbe
program b written, providing pcater flexibility in the constroction d the cxaotion I J ~

tern. However, it is necessary for the proprmmer to plan for the distribution by care-
fully h i p i n g the original progmm.

Mayer, et d., (IO] describe some basic timing problems in cross pmccssor tuk entry
calb and describe a pretruslator approach which as- pragmu to 8 p i f J the distribu-
tion. AB important feature of this approach u that it can use existing compilen to pep

form the compilation. Bmed OD the idea of [lo], an Ada subset translation system for

distributed execution has been implemented and h in operation at the University of

Michigan.

Each of the above uystems h u either adopted a limited viewpoint or pmented only
a very general discussion lacking in detail. In this paper we examine some of the fund*
mental bsaes involved in translation for, and distributed execution of, Ada programs
and the relation of these to the definition of tbc language. We conclude that in the con-
text of distributed program execution several upccts of the language definition need
refinement.

2. Preliminaria

Ada programs which are intended for distributed execution must deal with several
forms of heterogeneity: heterogeneity of addmsing program objects, heterogeneity of
proceaing reso~ycu, and heterogeneity of the environment of the individual processon
making up the distributed system. This section pmposes that to account for this heterct
geneit!. a program definition must include some information on the distribution of the

program. It further argues that the units of the language which may be distributed
should be more precisely specified in the language definition. Finally, the major dimen-
siom to the problem are identified and criteria which should k used in evaluating p r e
p o d trrmlation/cxaution Bystems presented.

%I. D'btributed Ada P?ol;?8UU

Computer pmgtams art written to produce output d some kind or have some
cffat on the environment. Embedded system puriculdy emphasize the latter. How-
ever, p r o p m a do not, in md of tbcmxlres, h8ve an deet; it b ody their execution
which produce, an deet. Whcn a program h uecuted on a u~pIote5301, tbb &tine-
tion b gencmllj unimportant and one oftea thinks d the pr0~r.m alone rn producing
the &at. However, when a prgrrm is execoted in a distributed manner on a set of

processom. the eflect of the execution is impacted by an additional fandamental com-
ponent. the mapping of the propam onto the cooperating processors and memoq. We
will call the pmgmm/mapping pair am rtcrrtion rbjrct.

It b thus the execution object which defines the effect which will radt. For exam-

ple, consider the control of a six degree of freedom mbot by seven cornputen, one con-
trolling each joint of the robot and one proriding oredl coordination of joint mote-
ment. Sopposc that a task is w i p e d to the contrul of each joint. Whik the individual
cornputem and interficu may be identical, the effect of executing the program for two

different mappings of tuks to procasors will certainly be different; the robot would, in
general, hare drastically different motions. While the mapping details rould certainly
be bidden at higber kveb d abstraction, it is also cku that the mapping must be a p l i
cit st some lor krel of abatrrction m &elused in [ll). On the other Land, in many
casu tbe effect of an execution object can be independent of the mapping component d
the object.

It is .Lo the cuc that tramlaton whost outputs are intended for distributed execu-
tion must have some knowledge of the mapping. In general, the mapping can be static
or dynamic, implicit or explicit, and come into existence and be used rt any of scvera!

points in the pro~m/compile/link/execute squence. We next extract from the map
ping the essential ingredients which, in combination with the program, both define the
effect of an execution object and provide sufficient information to allow compilation to
be reasonably performed. To accomplish this, we divide the mapping into two parts. In
the lint part, elements of a program M designated as being distributable, without bind-
ing them to a specific machine, and certain characteristics of the mapping (roughly. the
type of ddreuing required to access objects and the processor types which are to be
able to execute fmgments of code - sce k. 4) specified. We call this part a l i r t r i h t i o n

rpccifidion. The econd pUr = i p s elements of a program to specific machines. We
call thb the aiding 8pec$crtion. The mapping b thus the pair (distribution specific*
tion, bhding specification).

We rill then define a Dutri6utrl A h proprm to k an Ada p r o m together with
its distribution specification, urd tbe portiom of the binding apecifiiation necessary to
define the effect d executing the corresponding execution objett. The distinction
WWCCB m execution object urd distributed Ada propun ia thus the bindings which
are m~asential to ducribe the effat d the execution. We rill call the combination of
tbe tmla t ion system, the distribution and binding specification mechanums and the
ran time mystem which supports the translation and execution of distributed Ada

propanu a diotributcl A h ###fern.

The above definitions we only concerned with tbe content needed to allow progrm
translation and to define execution behavior. Execution object0 can be rcpmcnted in
many diRerent ways. The dbtribution and binding 8peCifiC8tiOns could k made explicit
in a progam, el., via p r q m u or ~pecidly defined p a c k ~ l a , tbey could be explicated
by completely separate specifKations, or they could be determined implicitly by the run-
time sjstem. Tbc translation qstem mentioned in (IO] b an example of the fint, while
the APPL s p t c m introduced by Cornhill [I] b ~ I I example of the second. The remainder
of t h i paper will explore some of the fundamental characteristics of distribution which
must be taken into account by any distributed translation system.

t.2. Unitr of Dttributbn

The choice of units of the language which ut allowed to be distributed significantly
impacts botb the translation pmcss required and the execution ellicieney obtainable.
The sclction of distnbotablc units is tbus important. The Ada Language Refemm
Manual (RM) takes a ntep toward making the definition of distributable units a part of
the language definition, but is not entirely pmise. It is the opinion of the authon that
a more complete statement in the definition of the language is necessary to allow imple-
menton to determine wha t tbey may and may not do.

The R M explicitly states that parallel taslu may be distributed, and further, that
any "part3 of the actioas of a given task" may be distributed if the effect of the p r e
gram cm be guaranteed by the implementation to not be altered. The latter would
ckatlj imply that individual statements and even expressions could be distributed
(which b highly desirable lor paallel processing of some operations). I t would Xcm that
subprograms could k distributed. However, internal data objects and packages are not
themwha actions or parts of actions. One migbt infer, themfore, that they may not be
distributed, though this is not explicitly lorbidden. Library packaga are not mentioned
at JI; since their distribution b not explicitly forbidden, it might be inferred that they
may be distributed. On the other hand, rincc what the RM das say a b u t units d d b
tfibdom u to explicitly permit mmc distribution, it might be inferred that anythhg not
mentbnd may not be distributed. Cl8rification b needed.

h b clear that the RM does not require distribution d anything. Nor docs it imply
that k a r u c UI implementation thaoses to distribute one kind of unit it must du, dlor
distnbatioa of other distributable units. I t b not r t a t d whether or not it is required

that an implementation which allows a unit b be distributed in some circumstanca

8

most do ao in dl ckomstanca. For example, b it permisuible to limit the dutribotion of
rtatements to non-mumite contextr? Similuly, there b DO indication of whether or not
an implementation can choost to rwtrkt the I8DgUage in mme way to aecompliih the
distribution, e.g., disallowing data objects in the rpecification of packagen which hate
t d s tb8t u e la be distribukd.

The latter two possibilities m m inconsistent with the philoeophy of language uni-

formity apparent in Ada. Indced, the- arc two principles whicb r e fecl should underlie
the choice of distributable units: 1) the definition should be fixed and not a function of
the dimensions of the problem, and 4) language uniformity should be maintained.

lo Section 3 we explore the implications of the units of distribution on translation
dificulty, eficiency of code execution, language uniformity urd distributed programming
exprusibility in order to proride more complete background for the decisions which
must be made regarding the above bum.

23. b ~ t n r i o n r of dbtribotiaa

There arc three major dimensions which patameterizc a distributed Ada system urd
which r i l l impact both the translation and execution phrues of the system, but which
are not part of the language specification. These, together with some of their typical

values .rt:

0 the memory interconnection arrhitecture of the system upon which the di3tri-

bated Ada programs are to execute,
- sh3red memory systems
- distributed memory systems
- mixed shared & private memory systems
- rnrnsively parallel systems

0 the binding time of the distribution,
- prior to compile time
- bctrecn front end and back end compilation phases
- at linkiag time
- at run-time

0 tk degree of homogeneity of the processors involved.
- identied proca~on d rysttm configuratiolu
- identied processom and different conligumtions
- different pmecsu~~ , bot umilv datr npnscntationr
- completely hctergcneou

.

.
8

There are thm major impacts of the memory architecture on the distribotcd translation
system, tbe a c c e a time to objecta, information which must be included in the distribu-
tion spccikation and the ddmsiog rtrategia r h i h d. Figures 1 and 2 illustrate
two of the possible system a r h i k t t o r a . Of p d c d u intemt is the mixed
shadjprir8te memory scheme of Figum 2 since it both hm a nchcr wt of possible d b
tribat ion modes rrqubing more complex implementation.

Ody certain t ima far apecilying the distribution rod binding are fersonrblc, and
depedimg upon the tima c b n , d mew utilitk are needed lor the compiler
enviromment.

Tb impact d heterogeneity e11 be viewed in w r t d diRcrent w8y8. Fimt, i t can
be viewed m requiring transWona between the data .ad d e repmentation, d the d i t
ferent plocemom. Second, it codd be &red as put d the wmanticr of the pro-m.
Or, tbe two v*ma could be combined.

.

rptem'r view d the dirtribated propmming probkm. Thew we:

0 examtion effxkacy

Dutribated pr0-m apraribility b concerned with the m c c h a ~ m s for specifying
the distribution of a pmpam a o o q I) wt of processom md memory. Are tbcn external

tuob for expressing the dbtribotion of the propam? Or b the dutribution expressible
dirtctly m part of the p r o m ? Does the notdon a d in a pr0g.m explicitly indicate,
in borne ray, that referewe 80 I, remote object require8 commo~catioa with 8 remote
proeessar and thus r r l be sppre&& rbrcr than reference8 to local objects?

In the cme of tramlation diffiidty, the mcuolt ir the complexity d tk comtructr
which must be iaclodad u &e comphd code (0 enawe thrt uce~ to remote objetta can
be .tcomplihd while mrint.ining d d the 0 t h c h u r r w k r d Ada For example,

how mpch context information must be tmdtted with remote object refercace to
d o r coarcct ddrrr determinstbnr to be made rhik r e t d n g Ada meoping roles with
mumire procedure cdb cmmiag machine bounduiea? How .IC tmk terminatiom to be
handled? How d m one hmdle opmtiona m i d with remotely defined types? How

J

a

is ddrmiug of remote objects handled!

Exccotion eficiency, put icdul j for real-time operations, b pcrbaps tbc moat

important criteria. It b likely to be most influenced by tbe object location and d d m ,
ing mechanisms for object references.

a. Unit of Dttributioa Coorideratioar

Wbca we speak of 8 unit of distribution (or #wetima distributable unit), r e r i l l
mean a unit of the language which iS allowed to be placed at any one of a set (of at least
two) of memories. We therefore begin by examining the rays in which pmgmm ele-
ments can be assigned. There are three distinct kinds of location usignments to be
made m the program mapping: 1) the memory unit to which data t u s b e d , 2) the
memou unit to which code is wiped, and 3) tbe pmessor which is to execute the
code. This classification is necessitated, in particular, by the mixed private/shared
memory of Figure 2. Since each processor in this configuration has d k c t aceus to two
memorin, specifying a processor which is to execute code does not imply the memory to
which either the data or code must be uiped. Similarly, h c c the shared memory can
be a c c d by multiple processors, assigning the code to shared memory docs not imply
rhicb processor is to execute the code.

The= an three types of addressing which will be called privately addressable
(mcmaJ. accusible only by tbe processor making the reference), sharrd addressable
(shared memory) and remotely addressable (mmt be actad via communication with

another cpu). We will use the term directly addressable to mean that the addnssing
may be either shared or privately addressable. We mquk one rule of reasonableness,

that tk memory on which a code segment ruides be directly addressable from the p r e
cusor which is to execute the code. For most memory architectam t b b implies that the
second and third cases collapse into one. It is only in the mixed p r i r a t e / s h d c u c that
the distinction mrut be m d e .

It rill mometimm be desirable to considcr a combination of data and code u 8 unit
e.g. if we consider a package ~II 8 anit of dbtribotioo, by which r e ril l mean that the
memo& on which t h e e are etored, rhik pomibly being distinct, must bc directly
addresable lmm the processor execoting the code portion.

'Ik comparison of -ita of distribution rill be framed on four major hrum that
ark, h one form or another, for most d the possible choices for uajk of distribution.
Thee m:

. .

10

0 Implied remote object access

0

0 Task termination problems

Object risibility urd morsive execution

0 Distributed t y p a

The impact of the dinerent choices for units of distribution on thew b o a r i l l k dip
cuued. Much of this analysis r i l l be bucd upon intenctions that are allowed among dif-
ferent tkments of the language. It is important to note that dl dlowcd interactions
must bc examined io considering the poasiblc units of distribution, whether or Dot they
conapond to good programming pneticc, since dl intersctiom defined in the RM r i l l
have to be implemented.

An argument rill be made that library subprograms and library packages are tea-

sonable choices for the basic units of distribution. It r i l l also be shorn that to obtain
reuonablc execution speeds with this bmic choice it ri l l be necessary to distribute data
objects compondmg to type defitions, and catain operations corresponding to these

tppes.

3.1. Implied Dttributed Object Ae-

LrnIess restricted in some way not currently specified in the language, the cboice of
packages, subprograms, tasks or bloch u units of distribution leads to a nqakment
that the programmer be able to reference distributed data objects, mbpmgramg. tasks
and type definitions. This follows became in the c13es cited in Sec.2.2 some executable
object is distributed from either the context in which it is defined or the context in
which it is made risible via a witb. Thu, either it must be able to rrference the kinds of

objects which can occur in the specification of that context, or, entities in i t s specifica-
tion must be able ta be referenced from that context. In particular, if a library package
is a unh of distribution, then any rubpropam or package including that prchgr ria a
with most be abk ta rcfercoce any dah objects, types, rubprog?.ms or tub defined
within it.

Thb implies a fine g.nulUity of Y C ~ , i.e., to individual data h m r . Except in
tbe case d the mixed memory wehitatons, tbe time required for this aceem rill involve
both a communication channel delay a d processing time on both processon brohed.
This dcfay rill dmaet certainly be aercII) orders d magnitude rlorer than aremsing
dixutb ddmsable objects, and rill tbas not be desirable for moot applications.

.

11

TI= have, therefore, b t t ~ suggestions that one aroid this delay by placing mtric-
tions on what CUI bc included in declarative regions or ~pccificatiopd to be distributed,
e.g., &allowing data object or rabprogrrms in the rpccification d 8 package to be dis-
tributed. There are two r t w m why mch restrictions are inadvisable. First, distributed
access LO data objects is highly dairabk in lome instances. For example, if one h u a

large da tabw which is to be .ceased in a number of different r a p by t d s miding on
different pmeeson, a useful heuristic iS to distribute the database in such a way that
the indidua! data items reside in memory diratly d k s a b l e by the processor which
r i l l most frequently operate on them. This implies a need for shared variable across

machina. Even the distribution of small data objecta makes Knse in tbc context of a

mixed ~ra te / sha red memory. Second, such rwtrictiom would be 8 change in, rod dis=
rupt the uniformity of, the language dcfinitioa. One should not, for instance. allow

packages in their full generality under aome circumstances and disrllow packages to con-
tain data objects in others.

There i an important consequence of remote wcua to objects other than tasks
with rupect to translator implementation. Access to data objects or subprograms by
code during its execution is part of the normal flom of control and normdly given no

special raognition with rrspcct to the sharing of the pzuecssor, i t . , such rcca3e3 are not
points at which the scheduler would normally be invoked. Since remote access invofvcs

sizable (in comparison ta cpa imtroction times) delay, remote references should be
treated u points at which the bchednler is invoked no that other tasks may use the
retcrencing cpu while the referencing thread of contml awaits completion of the re&
cnce. Similarly, mcipt of a message completing a remote derrnce should &o be
treated m a scheduling p in t .

8.2. object IrrribUty and Reconha Execation

It b necessv to distinguish between the distribution of an object a d distributed
access b it. As noted above, distributed u c a ~ to am object can be required .s a come
quenee d distributing larger item, much aa a package. Distribution d an objat itself
means p k i n g the object at a location dinerent horn the kxrtion containing the context
rurmunding the definition. While both i m h 8 need for distributed wcem to tk data
object, tk latter curies other implications Y well. First, due to the possibility d raw
sire procedure calls, it implies the l a d for pmsing context informatiom in mme way

with dl references $0 the distributed object. Second, the implicrtioa, d the program
may he Ins clear to the pmgmrmcr. We illustrate both pinta.

Soppee that the anit whicb creates an object (benccfortb nfencd to m tbe C-
unit), rad tbe w i t which refers to it (the R-anit) are .L diflerent rite. If the Gunit can
be monirely cdled, many instrocea d it and its variabla can C e e X j s t . I t then becomes
necwsy to export the context of tbe Ganit to dI R-units accessing the objects in the
C-unit LO emure that the correct version of tbc object is nferenccd. For example, con-
sider the lollowing pJr of procedms involved in mmire cdh:

p r d u m P 1 i,
X :INTEG ER ;

procedure P2 t

- Sappouc this is the Gunit and is on machine M1

I

I

I

I

- Suppose this is on machine MZ f M I

- a remote reference x:- ...
P1; - a mamire cdl

end P2;
begii - P1

I
P2;
l

end Pl;

Since there will be many instmca of the variable X, some mechanism mast be
developed to provide P2 with appropriate context information so that it can reference
the correct instance of X, most likely by pusing context information m an implicit
parameter with the call to P2. In (10) P1 and P2 each have an agent on the opposite
machine from which they reside, and communicate vir a s p t e m of mailboxes. Each
invocation d Pl instantiates a new renion of P2's agent and errata a new mailbox

through which P2 and ib appropriate agent tommanicate. The mailbox id u passed to

P2 upon ik call, and es#ntially provider the p r o p context. Thu scheme has the
d v a a t y e d being implementable with 8 pmtr.nslator which allows edsting Ada com-
pikn to be a d , bat hsa the dtdrmt~ d required 88 extra m-ge to be plssed at
the exit d each cdl to P2 $0 kU i t8 agent that it b done.

Similar problems d maintaining tbe proper context vibc with the distribution d
data objecb, lanctions, tmb 01 blocb. T b can resalt in a luge number d messagu
betweem tbc rite, and a corresponding bm of time if the Gunit md the R-units do not
shale 8 common manor). The c a w d thb djfkuhy b rarubive aubpr0gr.m cdb in
which -me part of the m m i v e robpropam b nmote lrom tbc rest, while it is

13

generally i nd ruabk to write pmgrms io socb a way aa Lo require this type of remote
referencing within rtcursivcly called iubprograms, if subprograms, tub, blocks or data
objecb are thern4rcs distributable (u opposed to being distributed ao part of a coaner

object such u a package), .D implementation L obliged ta implement meehanims to
dlor such usage.

If only l i b r v subprograms and library packages are allowed .s unib of distribu-
tion, all instanca of mumirely created objects will reside at the same location u dl
units which reference them, with the possible exception of objects created r i a the new

rllacator. In the latter crse, however, explicit addms information is availrble and the
problem will not a r k . Thus, the use d library subprograms and library p8ckagc~ u
units of dmtribution both simplifies translator implementation and eliminates one p s i -

bility for programmen to construct rrnneecssarilj complex implicit inter-processor com-
munication. In thosc situatiom, u indicated above, in which it is desired to distribute
data objects, the objats to be distributed may be encapsulated into a package, and the
package then distributed.

A frvther consideration in the distribution of data, subprogram and t a d objects u
distributed programming cxpmibility. It has been frequently etated that it i3 the phi-

losopby of Ada is to make explicit as much of the operation of a program as possible.
Since remote access is much more time consuming than local access, it may, in -me
c w , be necessary to hare comtrol over the access time, i.e., to take dkrnatire action if
an accus is not completed within a given time. Ada provides the timed entry call
mechanism which can, in theory at least, be wed for this purpox for task entry calls,
although 1101 discuss# a number of problems in the implementation of distributed timed
entry calls. However, there is nothing comparable for other forms of remote accc3s, e.g.,

remote data or subprogram xeferenca. It would, therefore, beem to be d u k b l e to at
least make remote =case3 explicit in a program so that the progmmmer or someone
reading a propam could euily distinguish remote and local accesses. With the distribu-
tion d data, sabpmgrrm or trsk objects, there b no such labeling mecha&m a d a b l e .
Pwkagu, however, mrrst k explicitly imported into a pragrm context, and il the w e b
not w d , each refmnce to an object of the package must be preceded with tbe package
name, flagging it m an external (to the present context) refkrence. To think of package
nama aa possiblj designating remoten- makes the interpretation d package nmu
ambiguous and is far from an ideal mlution. However, it can sene rn a flag to the
reader to check further. I t is a weaknew d Ada that an indicator d remoteneg is not
avrihblc in the Imguage.

.

14

8 3 . Tuk ~ t m i n a t b n

Ada tuk krmination is dependent not only upon tbe tmk potentidly terminating,
but upon sibling and child tub, and in romc case3 the parent tuk, u well. There ut
several ways in which this can e.03~ termination difficulty wben the tasL arc located on
dimerent machines. Consider the following code fragment:

k r k body MASTER u
t u k SLAVE-I b

entry ENTRY-1;
end SLAVE-1;

I
taok SLAVE-4 is

eatry ENTRY-1;
end SLAVE-4;

I
t u k body SLAVE-I is
begin

h P
d e e t

accept ENTRY-1;

terminate;
or

end relect;
end loop;

end SLAVE-1;

I
task body SWVE-4 is

I
w n

bOP
whxt

accept ENTRY-1;
or

terminat.;
end deet ;

end loop;

. I

16

-c-c-c-c-c

-x-x-a-o-a

-x-%-x-x-x

-%-x-x-x-x

-@-@-%-X-X

I I I I I
I 1 I 1 I

end SLAVE-4;

I

I
b-b - MASTER

mod;

Soppose that MASTER han reached ita ead atatemcot and completed. I t rill terminate
if SLAVE,] ... SLAVE-4 vt d at their w k t rtatements rod waiting on an open tar-
m h t e dtematire. In 8 Pniproccsbor ahustion, thu doa not cause onosod problcma.
The run time a p k m can check SLAVEJ ... SLAVE-4 for waiting at tbe krmhat.
Jtanatire. Tk key point b th.t barrue it can run at the high& priority it can do m

without any other task pining control and making an entry c d tu SWVE-1 ...
swm-4 kfm C O m p k tbc C k k 8d kkm 8pprOphb 8CtiOn.

Wfih dirrribated areeotbn thb L not r h a p possible. Suppme that MASTER b
OD processor MO, SLAVE-1 on MI, and SLAVE-2 OD M2, ete. Nor, when MASTER
completa, it must check termination conditioaa on the other prneessom. Dr to prop*
gation delays, m e conditions CUI ark. Far example, suppose that MASTER h u tom-
plcted and ocrirlly cbeeb the datu of ewh of ita alar- and that the timing d the
events ia as rhorn in Fig. 2. In this fi-, C indicates that the anh hm c o r p l d , an

16

X indic.te that a tmk b waiting on 8 terminate r~ternative, and a 0 indicates that it ib
neither completed nor waiting on 8 terminate dtemative. T1, ..., TI are the times at

which the MASTER u wnt m e s a p s from SLAVE-1, ..., SLAVE-4, rwpectircly, indi-
cating their state at thosc times. Note that at time T1, MASTER haa heen bcnt a me*
sage indicating tbat S ~ ~ , I b writing 8t 8 terminate a!ternrtive. &tween times T1
and T2, SLAVE-4, which urn not waiting at 8 terminate dternative o&a a remote
entry call to SLAVE-1, removing it from the condition of waiting on a terminate dterc
native. At time T2, SLAVE-4 has entend state when it is waiting on a terminate
alkrnative. Thus, SLAVE-1 ... SLAVE-4 all repxt that they ye waiting at an open
terminate alternative. MASTER might then terminate when it should not.

Of coorse, t h w problem could be blocked by making the rlarea writ for further
entries until all termination checking w m done, but if there were a long list of ribling
tssks some of which were not ready to terminate, th t could cause SLAVE-1 to unncces
sarib delay its operation. This problem can be d b d by mom complex terminrt
tion polling stratcg. HQICICT, that solution ia not the h o e here; it is the need for 8

compla stratem that b of interest. I t can both incrrve the translation dificdty and
and impede the execution efficiency of a distributed program.

3.4. Dttribution of Typa

Distributed .CCCY to subprograms and tub (as might result from distributing
packages) implies the necd to use remotely defined types, rn both the specification of the
subprogram or tssk and the referencing unit mast have risibility of the types of the
arguments ued. The distribution of types is one of the more interesting upects of d i s
tributing Ada programs as it forces 8 consideration of unusual implementation mechan-
ism.

Them are three quutions which most be considered when objects (data or task) ut
created by unib remote from the location of the unit in which the type is defined:

0 W h e ~ m d a l d objetta of the type located: on the aite of the object dalarr-
tion or the site of the type declaration?

Where are dlocated objata of the type located: on the site of the object declva-
tion, the site of the type declaration, the site of definition of the corresponding
. c c e s type, 01 the site of the declaration of the conuponding access object?

Where are the opedon8 d the type b C 8 t d

0

0

For cxample, let data type A be defined in a packap miding on machine M2, and X an

object d type A d c c l d in 8 unit miding on machine Ml. If X we- placed on M2
every reference to X from the unit in which it wm declared would q u i r e anmote rrferc
ence. Thus, it b likely one would rut X placed on MI. One must them examine the
implications of the operations wociated with type A. Each defined data type has t h m
c l u s a of operations, basic opmtions, implicit operations rad user defined operrtions.

Some of the basic and implicit opentiom cleuly rhould reside on M1, e.g., addition on
numeric types, 8tomge allocation for objects of the type, e. To maintsim uniformity,
tben, dl implicit and basic operatiom should k imported to the machine on which the
declared object resides. This, in turn, implies that the basic and implicit operations of

distributed typa must be replicated on dl procasors containing units which use the

t-.

Applying the notion of language uniformity, then, one might expect that user
defined operations should rlso be replicated on d1 processors containing units which use

the types. However, uaer defined operations appear explicitly in the region in which the
type u declared in the form of subprograms, and except for panmeterless rubprogram,
all subprograms are operotions for some type. Thus, replicating tbe user defined opera-
tions of t y p e roughly equates, in package for instance, to replicating all d tbe subpre
grams appearing in the package specification. This would also e m quite counter to

what one would expect from distributing a package, which might .Iter d l only contain
types and subprograms in i k specification. Fnrther, replicating user defined operations
implies a rrrnote access to variables and subprograms defined within a package bod1. It
thus seems to tbe autbon that i t is only a slight racrifice in language uniformity to not
replicate user defined operations and keep them on the memow to which the unit defin-
ing the type is assigned.

Now consider object creation ria the new allocator. This requires the definition of
an xccss tip for the object md the creation of an access object to hold ddms of the
allocated object. Each of these could potentially be declared in aeparate packages distri-
buted to different locations than either the one holding the original type definition or
the one rbich rill dtimatcly exaute tbe allocator. For example,

prchge P1 i m - on machine M1
[tmk] type A L . . ;

l
end P1;

. .

18

with P1;
package P2 b - on machine hi2

type B b ac- PIA;

I
end P2;

with P2;
package P3 b

C: B;
- on machine M3

-- declare an YCCSS rvirble to objects of type A

I
end P3;

- OD machine MI

with P1;
with P3;
procedure P4 b

i
begin

P3.C :- new P1 A; - allocate r new variable object of type A

I
end PI;

In this c u t a remote wces b requind on each reference to P3.C regadus of whur the
allocated object d type A b placed. The number of o(r-m.rchine opaations t minimized
by placed the dlaatcd object either on M3 or MI. To maintain I.ngaye uniformity,
then, one might ckct to place the dlocrkd objat on MI.

Another set of considerations ark 8 A k o m u 8 t u k type rrther than a data
type. Tukr can then k dynamically i~wtrntiated and the progmmma may rbh to
control theii plaeement on different poce3son tb put of the algorithm king developed,
e.g., vir pragmu. Or, one might wish to reduce or eliminate the tmt termination
problem described above. Both d these go&, however, b8re negative implications in
terms of --time efficiency, distributed program expressibility, and tmaslrtionrl diffi-
culties.

. .

EIirpinating the distributed tad kmrin.tiom problem rrquirea that tmlrr be placed

on the ume unit m their parents; then all of the checking of termination conditions will
take p l v t on a singJe processor and can me tbe existing mecbanbms for doing m. Tbus,
d c c l d t u k s would be placed on the processor of the dalu ing unit while tuks created
througb erduation of the allocator would be placed on the processor holding the anit in
which the comsponding access type definition WM elaborated. Any other choice all or^
t u k parentage to be remote from the tmk object itself and thus kds to tk distributed
ttrmimtion problem. This would require placing an allocated object of type A in the
above aample (with A now a t u k type) on M2 rince that u where the access type b el+
borated.

However, if tmk objects art located coincidentalb with their parents or at an ubi-
tmry bcation d g n e d by the programma, the code for t u k objects would bare to be
replicated u w u considered above for wer defined operations on types- The same dilli-
culty d baring to access local tu iabla dalued in package bodies would ark, which
would then be remote with nspect to the task body. Thi h= obvious execution effi-

ciency degradations if tub utilize shared variables, which they might well do in a con-
trolled way since in this case we are talking about shared variables hiddtn in the body of
a package. Moreover, it will become very difficult for a programmer to recognize which
referenca will be to remote rariables.

Clearly, the translation also becomes mow difficult. For example, consider separate
compilation of package bodies which contain tluk bodies for distributed tad typm.

Since package P2 and procedure PI could be compiled beforr the body of Pl, the repli-
cated td bodies would be called for by normal compilation procedure before the body
containing them would hare b a n compiled. This could be handled by making the com-
pilatior prcuua more involved and creating a record of anits requiring the t l sk bodies u
they am compiled. Then when the package body for PI is compiled, thir mod could be
checked to determine other processors for which the t u k M e a must be compiled.
Nevedeless, it wodd be one extra krel d complication.

There u not a good bolution which satisfies all problems. We Lave just outlined
several problem with placing t u k objects anywhere other than st the location contain-
ing the t u k definition. Suppose, then, that to be consistent with previotw comments
about mshg plckaga UI the onit d distribution re place task objccta with the
conuponding t u k type defiaition. This meam that impkmenton will hare to fwe the
dbtribrted t.sk termination problem, and dlotated and declared t u k s will often be
remote trom the creating anits, and thus involve remote t u k entry cdb. If it ia d a i r d

ao

to place a t u k at any pUricd.r node then that t d , or task type definition, mast k
efbC8psUl8tcd in a pwkage. COn~UePtly one could not hare the t u k r of the r a m type
~ c c r v r i n g st more thrn ungle node. This b TCIJ tonetmining for mme probkmr. To
aroid it would require having p u k a p t p , aa ruggcskd by Jessop [e].

8.L Umitr of Dbtributbm

As we have m n , there u m choice of dbtributable units within the c m n t Mini-

tion of Ada that b devoid d dilficulties d one kind or mother. Our preference b for
libmry rubprognme and (i b r y packages. They represent a nuonable gandarity d
distribution, they provide rersonabk flexibility of distributed program rtmcturing cap,
bilities, 8hey do not r e q k CIOU machine dynamic =ope management, and they prcacnt
minimum difficulty fo the compiler implementors. Data objecta created from remotely
defined typu should be placed with the unit treating them, with implicit and basic
operatiom being replicated. UKI defined opmtions ehodd remain on the unit elaborrt
ing the corresponding type deliition.

It would be our preference to restrict task objects created from task type ddni-
tions to the unitb on which the corresponding type definitions are elaborated, and to
have package type added to the language epecification. HOISCTCI, failing that, we

believe it b necessary to allow task objects to be placed on the unit initiating their tree

tion and living with the concomitant problems.

In vier of the fact that some of the decisions concerning units of distribution have
significant implications on the distributed language, we believe that the allowed units of
distribution should be spccificdly identified in the RM more explicitly than at prrscnt.

4. Impact Of Tr8nah t iond D'menrionr On Dbtributed Execution

4.1. Dbtributbm aad Bindim8 Spectlicritbnr

There arc three buts to consider with regad to this dimension: 1) d e n the dttri.
bution and binding spetificationr are mde, 2) what is epecified at these tima, and 3) the
repeaeatation of the epeci~icatioxu. The rust two d thesc issues are chuely rehted to
the fact that different addresdng 111t~b8&818 are required for p r i ~ . k and non-pnrate
memor). mferenccs. Indeed it ia tbi fact that kda to the need for rpv r t ing the p n
gram mapping into the t w o rpcifwrtbna. we will argue that the third k u e is another
ehorkoming of Ada T ~ S - T ~ distributed propme.

.

a i

4.1.1. Ruo-ttme SpeclfScatlon of Dbtrlbutbn and Biadb8

&tb the movcmcnt of m existing object and the creation rod location of a new

objtcu .ft capabilities one might like to have. hfeming botb the distribution and bind-
ins specifications until run-time meaos that the compiler rill not even Laor whether or
not object references ur private or noepnvate. It will thus eitber hare to we s p a -
e r r l i d addressing mccbmism @., create 8 h u d t-t m.chinc for dl object
r c c t s a) , or use 8 private memory ddreming mechanism which will then hate to be
djnamicdly converted to 8 nowprivate addressing mode for the objects to be dynami-
cally roved or created at a remote beation. The uw of a general id mecbaah
t h u g b o u t would makt bed ddnsses u~rrceptably expensive. The dynamic converc

shn of 8 private memov addressing mechanism at mn-time likely to nqdm changing
the instruction stream, an Cnort normdly amociated r i t b compilation, i.c., something
akin to dynamic recompilation (at kut backend processing) would be mpiml. This b
likely to be complex and an.ccept8bly e lor .

If the distribution specification w m given prior to backend procasing by the com-
piler, tk compiler would be able to use the right form of ddrming and only the correct
vdua rodd have to be inserted when binding b at run-time- A chimp in the
insmetion stream would not be necessary. For movement of objects this is effectively a

relinking operation for dl references to the object being moved, while for dynamic alloce
tion only a single a d d m r o d d have to be established.

Tbe above is the principal argument for providing the distribution specification by
compiletime. Subsequent sections on memory architectures and processor heterogeneity
r i l l dmribe more completely the information which must be included in the distribution
specification, Even with this, however, the overhead associated r i t b moving m object
may be substantial becaw of the relinking process. This suggests that ody infro
quently d e n n e d object, such m rbole p m p m s be moved. Dynamic creation and
dcktior of objects, bowever, may be cnticd to aome algorithms.

Tle mechanism for expressing the program mapping b .o important issue. Unforc
tunat&, the Ada language does not hare 8 complete e t of mechanisms by whicb run-
time bhding ern be conveniently expressed. The new dlotrtor provides a method d
dynamkdly creating a data or t d object, but hm no cmponding mecha&m for

8 p ~ ~ i f & target locatbn. Prqmm could be defined b supply thh information, but
since F a g m u vt compiletime things, dynamic binding would require wing a con-
struct Uc c w selection with each c u e being a dutribation prqma and an dlocator.
Thb m rather rrkwud, espccidy for p d k l protuson with a large nombcr of

.

procmon. Further, there b no mechanism for dpamicdy creating and binding pack-
a g q which we have a r g d above are the n a t d units of distribution. Finally, there

DO mechanisms at dl for rpecifyhg the movement of an object.

4.13. Dbtrlbutbrr and BSndhs 8pecVIcatbo at Llnk T h e or Before

Distribution and binding rpecification at link time faces the rune complexitia

dacribed for run-time, except that the overbed u i n c d before run-time. Again,
stating the distribution rpaificrtbn by backend compiletime u ascntial in a pngmatic
sense.

The reminhg choices d e to specify the distributions either between the frontend
and backend compikr phmu or prior fa compilation. The fonner e k d y allorr more
flexibility in terms d changing the usignment of distributable units without requiring
fall mompilation, while the latter permits 8 prutrrmlation scheme (described briefly in
the next section) to be developed which can rue existing compilers.

For distribution md binding specification at link time or before, language mahan-
isms for expressing the distribution are not required. Separate utilities may be used to

interactively specify the distribation and binding, or to read a #parate ''program file" of
specifications. However, u noted in section 3, from a point of vier program exprcsssibib
ity it is desirable that the remoteness of objecta be explicit. Also, the behavior of red-
t ime embedded systems ail1 depend upon the program mapping as well as the program.
Thus, there must k .D tmy ray for the programmer 01 aoftrare maintainer to read
and correlate the program and the mrpping. h v k g the mapping represented explicitly
as part of the program would minimize the opportunity for a programmer to miscorn
late the two parts. Hence, either the mapping should be pruent in the p m p m initially,
e.g., ~ i r pragmrs, or a daompilstion tool b needed which can reproduce the original
pmgrm with distribution and/or binding specifications iwrted in the program text.

In summary, the dwribution rpecification should be given by compiletime. It
should citber be included in the language or t h m should be a daompilrtbn tool which
will =reate the propam with the distribution rpccif~ation inserted in the code.

Dyn.m'w creation QI movement of ob jab b rrrrfy a d in rrdtime prolg .ms becaw of
the orabed involved. In this CUK, rimilu toob are a d d for the birding apecifica-

tion, if binding is not included in the propam. The Ada Imp- doa not have d o
qurte rccbrmirmr for expressing dpamic dlocation and movement d objects in the di+
tributed setting.

.

43 . Impllcrtbnm of Momory Archtteeturo

The principal cltettr of the memory ucbitecture are on the nature d the ddme
mcchanbmr and the time mired to =cas remote objett, (thus impacting the deck

sions on what to distributt). It wm noted rbre that it b neccaay for tk distribution
rpecifiiation to be mde by compiletime. If the ryatem consists of only r Ungk type of
memory interconnection and thu b known to the compilation system all that ie required
ir deipating the objects which may be remote fmm the code rbich referemew them.

Horcru, if more thrn one memory urhitecturc type may be present, the distribu-
tioa rpccirrcrtion must be nrcngthencd to include the type of conneetiom ktwccn p m

cesson and the mtmory holding objatta they reference. This b necamuy 10 t h r t the
compikr c.o generate the correct type d ddmdng mechanism. For example, coaaider
r loody coupled ryetern in which each of the hditidd nodes consiStr of a mixed
shared/prirrte memavy mdtbproccaaor aptem. The mechanism for dd rmiag an
objat u a bed r h d memory rill almoat tertainb k different than tk one d for
aecushg data in private or mrnote memory. The compiler needs to know the kind of
relationships which riIl be prwent in order to generate the correct instmetion rtreams.
Actud binding, which em occur lata, r i l l then be ementidy a linking operation which
merely rapplies specific rrloca for d h s references.

The distribution rpecificatioa t h w becoma a sct of nlatioaa between pain of
objects in which the relations correspond to kinds of d h s i n g required for the frnt
object to reference tbe second. This is different from the binding spairrcation which
maka an rbmlute assignment to each object. In fact, the dations for the distribution
specification can k deduced from the binding specification. However, aeparating the
weaker distribution specification md making only the distribution rpecifxation 8v.ilrbk
at compile time pmvkla greater fkxibility in distributed progmn &relopmeat. It then
becomer necessary to check for consistency of the distribution specification. Further,
when bin* iS fmdy specifid, it b necess- to check the consbtency d the binding
spaifiiation with the dmribution rptcification. Thus, the acpvrtion d 8he program to
processor mapping into distribution and binding rptcificatiom, while kceasing Ikxibil-
ity, teqmins the development of dditiond rupposf tooh

Tbe memory uchitecturta p m n t in a syrtem h hare . 1 ~ impact on the general

astun d the tranalrtion rcherna th.t may be d. For example, tbe ruthon hare
impkmeated r rubaet pntrmrrlation whemc which m a intended b rllor existing com-
pilers intended for single processor operation to be used for distributed Ada pmgrams

[lo]. Aceordin&, onfy t w o ddressing mechanism8 rere ma& rrdabte, tbe h a !

.

a4

object rrfcrcacing meheme and rabpropm or task entry calb (0 qrkr fanetiom to

nfcnncc =mote objeck. TIir oullica for dietribatcd memory w a r n in rbkb dl
object reftrrnca m either local or require m - y passing between q r t e m o . However,
in a rued pritate/shrd memory rptem, neither d t k whema will k ratbfactory
for the r h d memory if the compiler's only know!aige of memom i the bed memory
attached ta I, ria& processor. Tbe compikr would then be bcap&Jt of dimtly

ddxwsing the s b d memory, and weesing it w8 mystem cdb r o d be too inefkknt.
It would be necessary in thia c w thrt the compikr i t d hate knorkdge d at kut two

kinds of mcmorJ, private and o h d , and be able to generate effiient rahanisnu for
d h s a both, defeating the pwpaec of the p r e t d a t o r approwk Tk pretrmnhtor
spprosch, however, C.ID be quite useful for dMribakd memory vetem with only
moderate interprocessor commrrnicrtion rpeed rquirementa in which compile time
rssignment of program elemenb te processors b rcceptabk.

Finally, there i m aa ddit iond interaction the memory uchitecture m d
binding t h e considemtiom. A mmsivefy p d e ! q s t e m , sach m the vrly atri!ab!c
hypercube uchitectons, m dmo8t cat.in!y going to be wed dif'ferentb than a modest
sized loweb coupled rrrbikcture. The latter b likely to be wed for embedded red-time
systems in which each of the loosely coupled systems is attached to a different device, all
devices must work together in a coordinated fuhion, and the binding specification is
known priori. While the former may 8 b be part d m embedded nab the system, it

is likely to hate some special function in the system, such as image procming, in rhicb
the regularity of the p d l e ! rtructure u to be exploited in rome ray. In this c u c , u r
consequence of the homogeneity of the p~~cessors, the ox to which the individual p m
ctsson am w i p e d L likely to be determined at rumtime. Thu i m p b a need for
dynamic creation and distribution d objccta in the program. As noted h the previous
section, Ada lack d q a a t e m e c h a ~ ~ to deal with thu dynamic dttribmtion.

4J. Impact of Hetergcneity

Heterogeneity impwb both the rcmant'm d I, program m d the mechanisms for
translating and executing it. One obvioru way to deal with diffaenca in pmeessor
types ia by designing pmgrama for a vhad Ada machine m d then m a h g the compilers
for each d machine produce code which deetirely implemenb the A u d machine
ondancath the translated user prgnm. HOICICI, there is often a *fieant bee d
clfiekncy with this approach. From 8 more pragmatic point d vkw, it would be very
rdrautageous if compikm produced for u~procesor operation corrld be included in 8

distributed translation system with minimum modification. This would almost certainly

. ' .

t b

? q u i r e ruing w h a k r a data re~msentationr .ad mechanisms were n . L d for a #ten
pmcessur type. It would dm deny tmndation within the compiler for a tb tod Ada
macbine. From the wr'r p i n t of t k w it ri l l thur be the combinatbn d the prottssor
type and the compiler that are important, and when we rpeak of a "~IOCCISOI type," we

will rctodly mean the combinatbn d the processor type and the translator for it. With
this msumption, we reach the C O ~ C ~ U S ~ O B that a distributed Ada program m w t include
processor type information in the dbtribotion rpaification. Otherwise, Je semantics of
the program are ambiguous.

Consider, rust, the npnscntation of primatire data types, e.&, integers and noat

ing point numb-. Ada prorid- mahanbms to rupport portability rhkb are wfd for

distributd execution .(I well. One can define data t y p in terms of the m a p needed
and kt the implementatkm cboosc the underlying base type from which the w r type is
derived, with mora being flagged if m y processor cannot support the wqoirod mge.
However, programmen are not obligated k use these mechanisms and the trrmlatbn
syskm mwt then provide mmc type of data tramlation. Unfortunately, there b then
no guarantee that tmnslation b possible, e.&, you can't represent a 64 bit integer from
machine A with the 16 bits tbst might be arahble on machine B. Additional checking
of the distributed program is naessary to ensw the compatibility of nprucntation of
data objects. Thus, knowledge of proceawr type b required as input to a dutributed
translation system.

Second, different processon may well hare different values for implementation
dependent constants such u SYSTEMTICK, and may rue different achedulling d i x i p
lines. These differences may dI be in accord with the RM, but when a program
intended for execution on a #ingle processor is moved amongst different procesmn,
drastically different performance m y muh. I t b in general P n d m W that the effect
of the program b dependent 8pon the implementation. However, when 8 distributed
program is distributed monpt a wt of pzacessora, the underlying impkmentation
remains the same (even though the pulommce might well change), .ad it b no bnger
appropnate to think d the effect d the propun depending upon the impkmcntstion.
In this cme, we think of the semantics d the distributed p w a m u chaugiag with the
mapping of the original Ada pmpm onto the rpaific et of prweuora in the W m .
The pmgmnmer rbodd thw bow or be able Lo control the type d processor to which
thinp rill be usigaed. The pocasor type information rhould be included in the d'utri-
bation specification.

.

s. Conclu~bor

The distributed execution of Ada programs r q u i m farther considerrtion of two
issues: the units whicb may be distributed and the spccif~ation of the propam mapping
onto the set of procesbor, and memory to be used. It waa argued tha t the rnits of distri-
bution should be St8tcd more prcckly t h a pmently done in the RM. It was stated

that the pmgr8?a mapping may be dirided bto two puts, a dirtributiom spccifhtion
and a binding spafication; the former should be a required part of a "distributed Ada
program."

It wm recommended thr t the naturd units d distribution far Ada are library pack-
age3 and lib- rubprogram. These, b tam, nquk remote . t e e s ta individual data
objats, r o b p m m a and trsb. Use of remotely defined typea r e q h replication d
implicit and buic operatiom at each rite mating objects of the type. Dynamically el*
borated objects, tj., tasks, need to be placed at the site of elaborrtion, which creates
certain dif'fkdties with nsp#l to implied uceaa to remote d a b l a and task termin*
tion. The avdabihty d 8 pwkage type rodd deviate lome of these diffieoltiea.

The distribution specifiiation s h o d specify the plrocmeor type urd memory archi-
tecture wed for each part of tbe program. The inclusion of processor type maka apli-

cit program semantics which would otherwise be undetermined due to heterogeneity,
while the memory architecture p u t of the rpaifwation dlows the compiler to genmte
the correct kind of distributed object access code.

Them are two principal ut- where the authors feel that (hopefdy minor) exten-
sions u e needed to Ada to handle the distributed exaution situation. Since the package
is the mommended distribution unit, mechanisms for dpunicdly instantiating pack-
ages and specifying the procmor on which the n q package b to be placed are n d e d .
Syntax is needed by which remote references can be m d e explicit. In ddition, several

new (OOL uc required: 1) a mahanim for expzming the distribution of 8 program, 2) a

checker to ensure that the distribution specification is consistent with I.ntpsge d e s , 3)
8 checker to ensure that a binding specikation a consbtent with the emraponding d b
tribotion specification, and 4) a daompilatbn Lod which can insert the distribution
specifisation into the rat of the pr0q.m (i it waa not them in the firmt place).

Most d the issues mised in this P I P are closely related to the language definition.
The authors believe that theae b u m should be considered in conjunction with the 1988

language definition renew.

Aekaowkdgetncn(rt The ruthon r o d like to thank C h d a Anbnelli d the

.

a7

- -
C. R. Andrew8 rad F. B. Schneidn, ''COneepQ and notatiogb for concumnt p m
gmmming,*' Cmprting Surwcp, rd. lS, BO. 1, Mvcb 1983..

D.M. Hdad, 'Torub a language for toncarreat protcs&," Safiware f r u t i c c

:*a
. - *

'.. r n l Erprricnce, rd. lS, no. 0, pp. 8SW88,IOgS. .- .
.c -

A l a pregrrmming lrnpragr (ANSI/MiL-STD-lUlSA). Wmbington, D.C. 20301:
Ada Joint P m p m Office, Department d &few, OUSD(RkD), Jan. 1983.

. -it

D. Cornhill, "Partitioning Ada program8 far exaution on distributed eystems,"
IN4 Cemprtcr Data Enpi. C0n/., 1984.

,a

D. Cornhill, "A r ~ r a b l e daributed computing system fof embedded applicr
tion program written in Ada," A l a Lrttcrr, Nor./Da. 1983,

W.H. Jessop, "Ada packages and dbtribated qstepIw,** SICPLAN Nolicer,
Fcb/Mar 1082.

Intel, in Rejcrcnec Manual jor fntcf 4St Ertcnrionr t0 Ale! 17PE8S-001. Santa
Clara, CA: Intel, 1981.

i

s-f

'I

J.W. Armitage a d J.V. Chelini, "Ada software on distributed targets: a e w e !
of approaches,** ACM Ala Lefterr, rol. IV, no. 4, pp. 32-S;'J.nlFeb 198s.

M. Tedd, S. CmpbReghitri, urd A. Natdi, A l a for- &ult~microprrcerrorr.
.a Cambridge: CmbridF University Pres, 1984. -

RA. Volr, T.N. Madge, A.W. Naybr, and J.H. Maya, "Some problems in d&ri-
bating redtime d a propms aemw machina,(' A l a in &e, f roc. 81 tk 1985
hat 1 Ada Con/., pp. 72-84, May 1985.

R. A. Volr .ad T. N. Madge, "Robots ur! (nothing more than) abstract data
t w , " f r o c . 01 tbe Rdoticr RcmrreA Conference: t& ncrt S rear4 m l Beyond,

. -

Amg. icie, 1 9 ~ .

